基于神经网络的改进算法在入侵检测中的应用
Application of Improved Algorithm of Neural Network in Network
Intrusion Detection
摘 要 为解决传统BP算法在网络入侵安全检测中耗时比较长、容易陷入局部最小、均方误差降低率振动剧烈的问题,提出一种BP神经网络的改进算法,通过改变传统中固定学习率或通过某一常数改变学习率,引入动态变化,根据均方误差的变化而改变学习率。最后通过仿真实验,解决了传统算法中收敛速度较慢、均方误差下降时震动剧烈的问题。
关键词 BP 神经网络 学习率 均方误差 入侵检测
Abstract: In order to solve the problems in the traditional algorithm that they are
relatively long time-consuming, easy to fall into local minimum and to lead to severe
vibration to reduce the mean square error, we put forward a BP improved algorithm.The
improved algorithm of a BP neural network is presented in this paper. To change
traditional method which has been fixed learning rate or has changed learning rate by
controlling a constant, we introduce a new method that the change is dynamic. And we
change learning rate based on the changes of the mean square error. By simulation, we
solve the traditional algorithms convergence slower and the method that it leads to
severe vibration to reduce the mean square error.
Keywords: BP; neural network; learning rate; mean square error; intrusion detection
本期目录
- 对综合标准化与标准化战略转型的思考
- 《信息技术服务 运行...
- 标准化快讯
- SOA标准化工作稳步推进
- SOA工程工作组积极推进标准制定
- SOA质量与测评为SOA应用保驾护航
- 行业应用工作组:促进SOA标准...
- 搭建我国智慧城市标准体系
- 循序渐进推进云计算标准化工作
- 集成电路工艺化学品标准体系探讨...
- 电子制造过程中含重金属废液无害...
- Q-LINKPAN技术应用于短...
- 服务工业转型升级推动工业标准化...
- 50 GHz到325...
- 2012年信息安全国际标准化趋...
- 国际电工电子产品和系统的环境标...
- 基于网络探针的无线局域网智能优...
- 移动设备上的组态监控系统实现方...
- 基于神经网络的改进算法在入侵检...